This study illustrates the effect of magnetic field (MF) on the toxicity of two insecticides, emamectin benzoate (Emazoate 2.15% EC) and spinosad (SpinTor 24% SC), and determines their adverse effects on the bollworm (Earias insulana) through various biological and biochemical assays. The investigation indicated that exposure to the insecticides in a MF of 180 mT resulted in stronger toxicity, with LC 50 values of 0.162, 1.211, and 1.770 ppm, respectively. In addition, the results showed that magnetized insecticides significantly increased in the duration of the total immature stages (larvae and/or pupae) 32.1 and 36.6 days, compared with 27.9 and 30.5 days, respectively, in the nonmagnetized insecticides, while untreated check was 21 days. Also, the magnetized insecticides reduced the percentage of adult emergence, and increased deformations in the larval and pupal stages. Furthermore, sex ratio was greatly affected by exposure to both insecticides in conjunction with the MF. Exposure of the larvae of E insulana to magnetized insecticides can bring about malfunction in some biochemical process and significantly decreased the invertase activity, and decreased the total protein and carbohydrates. In contrast, it can increase amylase compared with nonmagnetized insecticides and untreated controls. Results concluded that the two insecticides' MF affected growth, survival time, and biological and biochemical parameters of E. insulana. Bioelectromagnetics. 43:368-380, 2022.