A kind of swing micro-mirror structure with high stability for gravitational wave observatory in space is proposed in this paper. As the key interface instrument in the gravitational wave observatory, the swing micro-mirror structure plays a very important role. Firstly, the 3D model of the mechanism is designed and established. Then, the solution method of the index of stability, pointing jitter, is researched. After that, the thermal stability and the first-order natural frequency of the mechanism are researched via finite element analysis. The first-order natural frequency of the mechanism is 247.55 Hz, which can meet the requirements of the design. It can be seen from the results of the simulation, the amplitude spectral density of the mirror angle deviation is 3.975 nrad/√Hz when the range of temperature variation is 0.1 °C, which is able to meet the requirements of the design. The thermal stability has a closed relationship with the structural stability around the X-axis. In addition, this article also studies the thermal stability of the mechanism in the case of temperature changes in different directions. It is found that the thermal stability of the mechanism around the Y-axis would be significantly affected by the temperature changes along the Y-axis.