2017
DOI: 10.5935/ambiencia.2017.01.05
|View full text |Cite
|
Sign up to set email alerts
|

Extremos Intense rainfall study of Goiânia/GO by modeling maximum annual events using Gumbel and Generalized Extreme Value distributions

Abstract: ResumoO conhecimento das precipitações máximas em uma bacia hidrográfica pode viabilizar diversos projetos relacionados aos recursos hídricos, uma vez que pode servir como base para o dimensionamento de obras hidráulicas, tais como vertedores de barragens, canais, bueiros, bacias de detenção, dentre outras. No presente trabalho, a estimação das precipitações máximas foi realizada através da metodologia de análise de frequência local. Foram aplicadas as distribuições de probabilidades de Gumbel e Generalizada d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
2
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 1 publication
2
2
0
2
Order By: Relevance
“…Analyzing the results of the Anderson-Darling test at a significance level of 5%, it was found that the best adjustment to the AMDR series (Figure 3) was given by the Kappa (72.1%), the GEV (27.1%), and the 2P-LN distributions, which was better for only 2 (0.8%) of the 247 series. These results corroborate the studies by Coelho Filho et al (2017), Ye et al (2018), and Back and Cadorin (2020), who also found that multiparametric distributions perform better when compared to commonly used ones, such as 2P-LN and Gumbel. Table 2 shows the number of AMDR series whose adjustments were suitable or not for each probability distribution tested, according to the Anderson-Darling test results.…”
Section: Resultssupporting
confidence: 91%
See 2 more Smart Citations
“…Analyzing the results of the Anderson-Darling test at a significance level of 5%, it was found that the best adjustment to the AMDR series (Figure 3) was given by the Kappa (72.1%), the GEV (27.1%), and the 2P-LN distributions, which was better for only 2 (0.8%) of the 247 series. These results corroborate the studies by Coelho Filho et al (2017), Ye et al (2018), and Back and Cadorin (2020), who also found that multiparametric distributions perform better when compared to commonly used ones, such as 2P-LN and Gumbel. Table 2 shows the number of AMDR series whose adjustments were suitable or not for each probability distribution tested, according to the Anderson-Darling test results.…”
Section: Resultssupporting
confidence: 91%
“…The probability distribution parameters were adjusted using the Method of L-Moments. This method has been used to estimate parameters distribution in hydrological studies (Beskow et al, 2015;Alemaw and Chaoka, 2016;Coelho Filho et al, 2017) due to producing better estimates for small samples, which are the ones generally available for environmental studies, besides not being influenced by gaps in rainfall series (Parida, 1999;Ganora and Laio, 2015).…”
Section: • Gumbelmentioning
confidence: 99%
See 1 more Smart Citation
“…For GEV distribution, differences above 20% were only observed with a return period of more than 100 years. These results are in consonance with Coelho et al (2017), who reported differences greater than 18% in the maximum rainfall calculated with the GEV and Gumbel distributions with parameters estimated by the methods of moments and L-moments method. Back (2018), who analyzed maximum flow estimates with different probability distributions, observed that for the 10-year return period, differences were below 10%, while differences could be above 20% for the 100-year return period.…”
Section: Rbciambsupporting
confidence: 91%
“…Conhecer as precipitações máximas resulta em diversas aplicações no campo da engenharia de recursos hídricos, podendo ser utilizada como base para o dimensionamento de obras hidráulicas, tais como canais, bueiros e vertedores (Coelho Filho, 2017). Segundo Silva et al (2018) e Gardiman et al (2012), para a caracterização das precipitações é necessário conhecer a sua intensidade, duração e frequência de ocorrência em determinado período de retorno (curvas IDF), pois essas informações permitem projetar, de forma mais segura, estruturas hidráulicas como barragens; canais escoadouros, obras de drenagem, projetos de irrigação e projetos agrícolas.…”
Section: Introductionunclassified