“…(53)Now, since ∂ε δ (x, ȳ, t)/∂x = ∂y δ (x)/∂x and (5) coincides with (14a), we can exploit(36) to bound∂ε δ (x, ȳa , t) − b 1,δ (x)/2 ∂x x=xa ≤ 2L r . (54)Then, substitute (54) into (53) and use(27) and (39) to bound∂ǫ 1 (η, t) ∂η η=ηa ηa ≤ γδL 2 r 3(55)and use (42), (51), (52) and (55) to bound (48) as|x(t) − z 1 (t)| ≤ |x(0) − z 1 (0)| + tγ 2 k3 (L r , δ) + r |x(τ ) − z 1 (τ )| + |ȳ(τ ) − z 2 (τ )|dτ(56)where k1 (L r , δ) := δL r (2 + L r (3 + L r ) + 3L r ). We now use the same conceptual steps (46)-(56) to find a bound for|ȳ(τ ) − z 2 (τ )|.…”