The distribution and chemical phenotypes of sympathetic and dorsal root ganglion (DRG) neurons innervating the equine ileocecal junction (ICJ) were studied by combining retrograde tracing and immunohistochemistry. Immunoreactivity (IR) for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) was investigated. Sympathetic neurons projecting to the ICJ were distributed within the celiac (CG), cranial mesenteric (CranMG), and caudal mesenteric (CaudMG) ganglia, as well as in the last ganglia of the thoracic sympathetic chain and in the splanchnic ganglia. In the CG and CranMG 91 +/- 8% and 93 +/- 12% of the neurons innervating the ICJ expressed TH- and DBH-IR, respectively. In the CaudMG 90 +/- 15% and 94 +/- 5% of ICJ innervating neurons were TH- and DBH-IR, respectively. Sympathetic (TH-IR) fibers innervated the myenteric and submucosal ganglia, ileal blood vessels, and the muscle layers. They were more concentrated at the ICJ level and were also seen encircling myenteric plexus (MP) and submucosal plexus (SMP) descending neurons that were retrogradely labeled from the ICJ. Among the few retrogradely labeled DRG neurons, nNOS-, CGRP-, and SP-IR nerve cells were observed. Dense networks of CGRP-, nNOS-, and SP-IR varicosities were seen around retrogradely labeled prevertebral ganglia neurons. The CGRP-IR fibers are probably the endings of neurons projecting from the intestine to the prevertebral ganglia. These findings indicate that this crucial region of the intestinal tract is strongly influenced by the sympathetic system and that sensory information of visceral origin influences the sympathetic control of the ICJ.