We present a study on inelastic thermoelectric devices, wherein charge currents and electronic and phononic heat currents are intricately interconnected. The employment of double quantum dots in conjunction with a phonon reservoir positions them as promising candidates for quantum thermoelectric diodes and transistors. Within this study, we illustrate that quantum coherence yields significant charge and Seebeck rectification effects. It’s worth noting that while the thermal transistor effect is observable in the linear response regime, especially when phonon-assisted inelastic processes dominate the transport, quantum coherence does not enhance thermal amplification. Our work may provide valuable insights for the optimization of inelastic thermoelectric devices.