SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, and TNFα. Ezrin, a sub-membrane adaptor-protein, organises multi-protein-complexes such as ezrin+NHERF1+NHE+CFTR, which control the density and location of ACE2 receptor expression on the luminal surface of airway-epithelial-cells, as well as determining susceptibility to SARS-CoV-2 infection. This protein complex is vital for lung-surfactant production for efficient gas-exchange. Ezrin also forms multi-protein-complexes that regulate signalling kinases; Ras, PKC, PI3K, and PKA. m-RAGE is a pattern-recognition-receptor of the innate immune system that is triggered by AGEs, which are chemically modified proteins common in the elderly and obese. m-RAGE forms multi-protein complexes with ezrin and TIRAP, a toll-like-receptor adaptor-protein. The main cause of COVID-19 is not viral infection but pro-inflammatory p38MAPK signalling mediated by TLRs and RAGE. In contrast, it appears that activated ezrin+PKA signalling results in the activation of transcription-factor CREB, which suppresses NFκB mediated pro-inflammatory cytokine expression. In addition, competition between ezrin and TIRAP to form multi-protein-complexes on membrane PIP2-lipid-rafts is a macromolecular-switch that changes the priority from innate immune activation programs to adaptive immune activation programs. Human Vasoactive Intestinal Peptide (VIP), and Human Ezrin Peptides (HEP-1 and RepG3) probably inhibit COVID-19 by activating the ezrin+PKA and ras>Raf>MEK>ERK>RSK>CREB>IL-10 signalling, which favours activation of adaptive immunity programs and inhibition of the dysfunctional innate-inflammation, the cause of COVID-19. HEP-1, RepG3, and VIP in individual human volunteers and in small clinical studies have been shown to be effective COVID-19 therapies, and seem to have a closely related mechanism of action.