2023
DOI: 10.1177/00405175221148516
|View full text |Cite
|
Sign up to set email alerts
|

Fabric defect detection based on low-rank decomposition with factor group-sparse regularizer

Abstract: Recently, many low-rank-based methods in terms of detecting defects in fabric images have been proposed. However, there are two disadvantages of these methods. First, current low-rank based methods use the nuclear norm as the surrogate of rank, which causes inefficient optimization process and sub-optimal performance. Second, low-rank defective regions cannot be detected by low-rank based models. Thus, we propose a factor group-sparse regularized low-rank decomposition model (FGSRLRD) to solve these problems. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 37 publications
0
0
0
Order By: Relevance