2021
DOI: 10.1088/1742-6596/1948/1/012160
|View full text |Cite
|
Sign up to set email alerts
|

Fabric Defect Detection Method Based on Improved U-Net

Abstract: Computer vision builds a connection between image processing and industrials, bringing modern perception to the automated industrials. At the same time, defect detection based on deep learning has played an important role in automated detection. In this paper, an improved convolutional neural network CU-Net for fabric defect detection is proposed. In this method, the classical U-Net network was improved. On the basis of network size compression, attention mechanism is introduced and a new compound loss functio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 4 publications
0
2
0
2
Order By: Relevance
“…The publicly available AITEX defective fabric dataset was used as the test dataset. When the results of the study were examined, it was seen that the proposed method had an accuracy of 98.3% [13].…”
Section: Related Workmentioning
confidence: 99%
“…The publicly available AITEX defective fabric dataset was used as the test dataset. When the results of the study were examined, it was seen that the proposed method had an accuracy of 98.3% [13].…”
Section: Related Workmentioning
confidence: 99%
“…Apesar dos demais resultados e da otimizac ¸ão do recall, com um resultado de 83,82%, foi possível superar apenas [17] (82,58%), permanecendo abaixo dos demais trabalhos que utilizaram outros métodos não relacionados ao YOLO na base de dados AITEX. No topo, [20] alcanc ¸ou um recall de 92,70%. Mesmo não superando o melhor resultado, o resultado obtido ainda está muito acima dos demais trabalhos que utilizaram o YOLOv5, como [18](48,95%).…”
Section: Métricas De Avaliac ¸ãOunclassified
“…Com isso, alcanc ¸aram resultados superiores ao modelo U-Net com menos recursos computacionais e menos parâmetros, e consequentemente menor tempo. Na mesma linha de pesquisa, [Rong-qiang et al 2021] construíram uma versão aprimorada da rede neural U-Net reduzindo o número de canais e adicionando um mecanismo de atenc ¸ão com quatro vezes mais características que a original para aumentar a precisão da localizac ¸ão. Além disso a detecc ¸ão de defeitos foi tratado como um problema de classificac ¸ão binária, identificando se os pixels pertencem ou não à classe defeituosa.…”
Section: Trabalhos Relacionadosunclassified