Although chitin is a representative abundant polysaccharide, it is mostly unutilized as a material source because of its poor solubility and processability. Certain specific properties, such as biodegradability, biocompatibility, and renewability, make nanofibrillation an efficient approach for providing chitin-based functional nanomaterials. The composition of nanochitins with other polymeric components has been efficiently conducted at the nanoscale to fabricate nanostructured composite materials. Disentanglement of chitin microfibrils in natural sources upon the top-down approach and regeneration from the chitin solutions/gels with appropriate media, such as hexafluoro-2-propanol, LiCl/N, N-dimethylacetamide, and ionic liquids, have, according to the self-assembling bottom-up process, been representatively conducted to fabricate nanochitins. Compared with the former approach, the latter one has emerged only in the last one-and-a-half decade. This short review article presents the preparation of composite materials from the self-assembled chitin nanofibers combined with other polymeric substrates through regenerative processes based on the bottom-up approach.