High toughness epoxy resin hybrid composites were prepared using nanoclay, SiC, and glass-caryota intra ply fibers. The main aim of this research was to study the effect of adding Caryota urens natural fiber from biomass as a potential fiber along with synthetic glass fiber in load-bearing and wear properties of nanoclay and silicon carbide (SiC) particle toughened epoxy composite. The intra-ply glass-caryota fiber, silicon carbide, and nanoclay were surface-treated using 3-Aminopropyltrimethoxysilane. The composites were prepared using the hand lay-up method. The tensile result shows that the addition of 1 vol% of the silicon carbide particle along with nanoclay in intra-ply glass-caryota fiberreinforced epoxy composite gives improved results than other composite designations. The wear properties show that the addition of silicon carbide of 1.0 vol% gives a lower specific wear rate of 0.024 mm 3 /Nm. Similarly, the composite, which contains 1.0 vol% of silicon carbide and nanoclay gives higher penetration resistance and energy absorption. In all properties, the addition of silicon carbide modifies the values significantly. This high toughness intra-ply glass-caryota fiber-reinforced silicon carbide/nanoclay toughened epoxy resin composite could be used in automotive, sports components, domestic appliances, and structural body applications.