Polymer nanocomposites have recently been introduced as lead-free shielding materials for use in medical and industrial applications. In this work, novel shielding materials were developed using low-density polyethylene (LDPE) mixed with four different filler materials. These four materials are cement, cement with iron oxide, cement with aluminum oxide, and cement with bismuth oxide. Different weight percentages were used including 5%, 15%, and 50% of the cement filler with LDPE. Furthermore, different weight percentages of different combinations of the filler materials were used including 2.5%, 7.5%, and 25% (i.e., cement and iron oxide, cement and aluminum oxide, cement and bismuth oxide) with LDPE. Bismuth oxide was a nanocomposite, and the remaining oxides were micro-composites. Characterization included structural properties, physical features, mechanical and thermal properties, and radiation shielding efficiency for the prepared composites. The results show that a clear improvement in the shielding efficiency was observed when the filler materials were added to the LDPE. The best result out of all these composites was obtained for the composites of bismuth oxide (25 wt.%) cement (25 wt.%) and LDPE (50 wt.%) which have the lowest measured mean free path (MFP) compared with pure LDPE. The comparison shows that the average MFP obtained from the experiments for all the eight energies used in this work was six times lower than the one for pure LDPE, reaching up to twelve times lower for 60 keV energy. The best result among all developed composites was observed for the ones with bismuth oxide at the highest weight percent 25%, which can block up to 78% of an X-ray.