A low-loss and low-dispersive optical-fiber-like hybrid HE 11 mode is developed within a wide band in metallic hollow waveguides if their inner walls are coated with a thin dielectric layer. We investigate terahertz (THz) transmission losses from 0.5 to 5.5 THz and bending losses at 2.85 THz in a polystyrene-lined silver waveguides with core diameters small enough (1 mm) to minimize the number of undesired modes and to make the waveguide flexible, while keeping the transmission loss of the HE 11 mode low. The experimentally measured loss is below 10 dB/m for 2 < ν < 2.85 THz (~4-4.5 dB/m at 2.85 THz) and it is estimated to be below 3 dB/m for 3 < ν < 5 THz according to the numerical calculations. At ~1.25 THz, the waveguide shows an absorption peak of ~75 dB/m related to the transition between the TM 11 -like mode and the HE 11 mode. Numerical modeling reproduces the measured absorption spectrum but underestimates the losses at the absorption peak, suggesting imperfections in the waveguide walls and that the losses can be reduced further.