A novel biomedical coating was prepared from selfassembled colloidal particles through direct electrodeposition. The particles, which are photo-cross-linkable and nanoscaled with a high specific surface area, were obtained via self-assembly of amphiphilic poly(γ-glutamic acid)-g-7-amino-4-methylcoumarin (γ-PGA-g-AMC). The size, morphology, and surface charge of the resulting colloidal particles and their dependence on pH, initial concentrations, and UV irradiation were successfully studied. A nanostructured coating was formed in situ on the surface of magnesium alloys by electrodeposition of colloidal particles. The composition, morphology, and phase of the coating were monitored using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and X-ray diffraction. The corrosion test showed that the formation of the nanostructured coating on magnesium alloys effectively improved their initial anticorrosion properties. More importantly, the corrosion resistance was further enhanced by chemical photo-cross-linking. In addition, the low cytotoxicity of the coated samples was confirmed by MTT assay against NIH-3T3 normal cells. The contribution of our work lies in the creation of a novel strategy to fabricate a biomedical coating in view of the versatility of self-assembled colloidal particles and the controllability of the electrodeposition process. It is believed that our work provides new ideas and reliable data to design novel functional biomedical coatings.