Soybean protein isolate (SPI) and its four fractionated products (7S globulin, 11S globulin, upper soybean residue, and lower soybean residue) were compared by fabricating films and film liquids. The separation and grading effects, rheological properties of the film liquids, and difficulty in uncovering the films, in addition to the mechanical properties, water vapor permeability, oil permeability, and surface morphology of the films, were investigated. Results showed that the centrifugal precipitation method could be used to produce fractionated products. The 7S and 11S globulin films exhibited better hydrogels at lower shear rates than the other SPIs; however, they were more difficult to uncover. The tensile strength of the graded films decreased by varying degrees. However, the elongation at the break of the upper soybean residue film considerably increased, reaching 70.47%. Moreover, the permeability and surface morphology of the film were enhanced or weakened. The fractionated products, 7S and 11S globulin films, exhibited better performance. Overall, this study provides a basis for the improved development and use of fractioned SPI products.