BiFe 1−x Zn x O 3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol-gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X-ray diffraction (XRD), microstructure and X-ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe 2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P-E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm 2 , along with a coercive field (2E c ) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10 −7 A/cm 2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge-limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 10 5 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.
K E Y W O R D SBiFeO 3 films, electrical properties, sol-gel method, Zn doping ACKNOWLEDGMENT