2012
DOI: 10.1016/j.jallcom.2012.02.116
|View full text |Cite
|
Sign up to set email alerts
|

Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
1

Year Published

2012
2012
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 32 publications
(9 citation statements)
references
References 28 publications
0
8
0
1
Order By: Relevance
“…This kind of coating should possess low electrical and thermal conductivity, in order to prevent heat losses, good adhesion to the substrate, chemically inert and matching thermal expansion coefficient with the skutterudite. 171 Some examples are Mo/SiO x multilayer lm, 172 composite glass 173,174 or Al 2 O 3 . 171 The inorganic-organic hybrid silica is the best approach to obtain a reliable method for device engineering in order to coat skutterudite material so far.…”
Section: Skutterudites Based On Cosbmentioning
confidence: 99%
“…This kind of coating should possess low electrical and thermal conductivity, in order to prevent heat losses, good adhesion to the substrate, chemically inert and matching thermal expansion coefficient with the skutterudite. 171 Some examples are Mo/SiO x multilayer lm, 172 composite glass 173,174 or Al 2 O 3 . 171 The inorganic-organic hybrid silica is the best approach to obtain a reliable method for device engineering in order to coat skutterudite material so far.…”
Section: Skutterudites Based On Cosbmentioning
confidence: 99%
“…Moreover, the sublimation products can diffuse or condense on the cold‐side of TE uni‐couples, leading to electrical shorts in the TE device . The poor oxidation resistance of SKD materials and Sb sublimation at elevated temperatures seriously limit their large‐scale applications …”
Section: Development Of Filled‐skutterudite‐based Devices For Power Gmentioning
confidence: 99%
“…Generally speaking, most metallic coatings applied by sputtering adhere poorly to SKDs. If this were not so, significant inter‐diffusion and reactions between the coating and the substrate would likely be unavoidable . As for ceramics and enamel layers, the mismatch in the CTE between the coating layer and SKDs is difficult to eliminate.…”
Section: Development Of Filled‐skutterudite‐based Devices For Power Gmentioning
confidence: 99%
See 1 more Smart Citation
“…(2)电极材料的膨胀系数要与其相 连接的热电材料尽量接近, 从而避免应力集中降低 图 8 热电器件全参数优化设计逻辑框架 [40] Fig. 8 Logical framework for the full-parameter optimization of a thermoelectric power generation module [40] 材料或结合面的强度甚至导致断裂; 3 2.2 界面接触性能 接触电阻和接触热阻是衡量界面结合质量的关 键参数。热电元件的界面接触电阻可基于四探针原 理测量, 而接触热阻的评价较为困难, 尚无可直接 测量的方法 [45] 。降低电极和热电材料间的接触电阻 和接触热阻的有效方法是在两者间引入适当的过渡 层(或称界面层)。表 1 列举了典型热电发电器件中 所选用的过渡层材料。 目前, 在低温 Bi 2 Te 3 基热电器件中通常采用电 镀 Ni 的方式制备过渡层, Ni 层厚度在 3~10 μm 左 右 [59][60] 。Buist 等 [59] 报道了未预镀镍的碲化铋基材料 与 Bi-Sn 合金焊料的接触电阻率约为 100~200 μΩ [79] 使用 Ti-Al 作 过渡层, 使得界面电阻率保持在 10 μΩ•cm 2 以下。 Fleurial 等 [80] 使用 Ti 作电极, Zr 作过渡层, 其接触电 阻率约为 19 μΩ•cm 2 。 Muto 等 [31] 使用 CoSi 2 和 Co 2 Si 分别作为 n 型和 p 型方钴矿的连接层, 其接触电阻 率在 2 μΩ•cm 2 左右。 在高温硅锗合金热电元件的研究中, NASA-PL 先后报道了多种界面结构和界面结合技术 [81][82][83][84] , 例 如 W/C/SiGe 元件初始接触电阻率低于 100 μΩ•cm 2 , 进一步利用 Sealed C 代替 C 作为过渡层制备的 W/Sealed C/SiGe 元件的初始接触电阻率仍保持相 同的低值; NASA-JPL 在 MHW-RTG 和 GPHS-RTG 中采用掺杂的 Si-Mo 合金作为电极与 SiGe 直接连接, 同样获得了较小的界面接触电阻。 另外, 1996 年, 日 本 Lin 等 [85] 报道了一种(Si-MoSi 2 )/SiGe 热电发电元 件, 虽具有良好的界面结构, 但接触电阻率高于 2000 μΩ•cm 2 。2000 年, Lin 等 [86] [88][89][90] 。国际上多个研究团队先后报道 了在有氧环境下 SKD 在 400 ℃以上会发生严重的 氧化(尤其是 p 型材料会粉碎性开裂)并最终导致器 件完全失效 [91][92][93] Fig. 9 Diagram of main failure modes of thermoelectric devices 成器件的关键部件(热电材料、电极、基板等)在长 期服役过程中将不可避免地产生性能劣变和功能损 伤, 尤其是器件中众多异质界面极易产生结构蜕 变、损伤甚至破坏。NASA-JPL 研究了 RTG 中使用 的 SiGe 和 PbTe 器件的服役特性, 公开报道了多任 务同位素温差电池(MMRTG)的输出功率年衰减率 约为 3%~5%/ [94] 。 与空间电源 RTG 相比, 工业余热、 汽车尾气废热发电等地面应用的服役环境更为复杂 和多变, 例如冷热交替的热循环会引起应力疲劳, 高湿空气对器件主要部件的氧化与腐蚀会造成器件 损伤。 目前, 已有部分工作运用有限元分析(FEM)开 展了单一外场条件下器件的静态或瞬态特性的模拟 仿真研究(如温度场、电势场、热流量分布等) [95][96][97][98][99][100][101] 。 另外, 近年来少数研究人员开始尝试热电器件中热 电结构耦合的研究 [102][103]…”
Section: 器件设计原理unclassified