In this work, the ordered nanoporous arrays of Au and Pt films are fabricated using anodized aluminum oxide (AAO) template based on the sputtering method. The presented synthetic strategy is scalable to large area by incorporating the deposition of a thin layer of Au or Pt. In addition, the grain size of Au and Pt nanoporous films is controlled with sputtering time. The thorough study of electrical transport properties for these metal films enables us to infer the nanoporous film morphology, and the evolution of the grain size with the change of sputtering time. In fact, the different physical behaviors are observed to occur in these metal films. The negative temperature coefficient of resistance (TCR) is visible for Pt nanoporous films, while Au nanoporous films show the positive TCR. With the increasing of sputtering time, the Pt grain size gradually becomes bigger, and the negative TCR properties weaken because the interface scattering of the electrons reduces. Therefore, the fabrication of metal nanoporous films with well-controlled physical properties might open new pathways for the growth of metal electrodes on AAO substrates for nanoelectronic devices.