Sb2S3 has been extensively used as light absorber for photoelectrochemical cell. However, its p‐type nature may result in the formation of Schottky junction with substrates, thus hindering the collection of photogenerated holes. Herein, an ultrathin CuxS layer is successfully engineered as the bottom junction for Sb2S3 for the first time. Capitalizing on its impressive electrical properties and superior optical properties, the CuxS layer exhibits a high work function of 4.90 eV, which causes the upward band bending of p‐type Sb2S3, forming a hole‐transparent structure with ohmic contact. The transparency of the ultrathin CuxS layer enables back‐illumination of the Sb2S3/CuxS platform, facilitating the integration of intricate catalyst layers for photoelectrochemical transformation. When modified with Pt nanoparticles, the photocurrent density reaches −5.38 mA cm−2 at 0 V vs. RHE, marking a fourfold increase compared to the photocathode without CuxS layer. When introducing a molecular hybrid TC‐CoPc@carbon black, a remarkable average photocurrent density of −0.44 mA cm−2 at the overpotential of 0 V is obtained for CO2 reduction reaction, while the photocurrent density is less than −0.03 mA cm−2 without CuxS.