A UO22+‐PVC membrane electrode was constructed using 2‐thenoyltrifluoroacetone as ionophore and its electrochemical response performance was characterized. The effect of membrane composition on the electrode performance was studied and best results were obtained using dioctylsebacate as a mediator and potassium tetrakis(4‐chlorophenyl)borate as anion excluder. The optimized UO22+‐sensor exhibited a Nernstian response with a slope of 29.5±0.5 mV decade−1 over the concentration range 5.0×10−7−1.0×10−1 mol L−1 at 25 °C with a detection limit of 3.1×10−7 mol L−1. The optimized electrode showed very good selectivity towards UO22+ relative to a wide variety of other cations and fast response time. Surface morphology of the optimized membrane electrode at different stages of its development and use was investigated and discussed. Quantum chemical calculations for geometrical optimization of the ionophore were carried out to investigate the interaction between the ionophore and UO22+ using DFT B3LYP/6‐31++G(d,p) level of theory and the obtained data confirmed the proposed response mechanism. The developed sensor was successfully applied for UO22+ selective determination in real water samples and the obtained results were compared to those obtained by spectrophotometric method indicating no significant difference.