This paper is devoted to the study of LaInO3 based co-doped materials. Solid solutions in which lanthanum is substituted for strontium have sufficiently high conductivity values, but a low level of oxygen deficiency is realized. Mg2+ and Ca2+ ions were chosen as co-dopants for the B sublattice. Both series of the investigated La0.9Sr0.1In1-xCaxO2.95–0.5x and La0.9Sr0.1In1-yMgyO2.95-0.5y solid solutions crystallize in orthorhombic symmetry with sp. gr. Pnma. The ionic conductivity in a dry atmosphere is determined by the oxygen ions transport. Oxygen-ion transfer in solid solutions is ~30–40% at high temperatures (T 700°C) and increases to 80% as the temperature decreases to 400–300°C. The substitution Ca2+ with In3+ increases the electrical conductivity of the oxygen ions; the highest values are achieved for the compositions La0.9Sr0.1In0.95Ca0.05O2.925 and La0.9Sr0.1In0.9Ca0.1O2.9. The introduction of Mg2+ co-dopant at the In3+ positions leads to a decrease in ionic conductivity compared to La0.9Sr0.1InO2.95. The effects of changing oxygen mobility with changing geometric factors (cell volume, critical radius) are discussed.