This study investigates the impact of incorporating carbon nanofibers (CNFs) into sugar cane cellulose at a high weight ratio (6 wt.%). Composite samples were prepared using a hot hydraulic press technique, and their thermal stability was analyzed through thermal gravitational analysis in a nitrogen environment. The results indicate that the cellulose-CNF composite exhibits a simplified single-stage decomposition compared to the more complex behavior observed in pure cellulose. FTIR analysis reveals the presence of –OH bonds, indicating enhanced hydrophilic properties in the composite. Dielectric spectroscopy, conducted over a frequency range of 100 Hz to 1 MHz, explores the effects of CNFs on the relaxation and conduction mechanisms at different temperatures. Parameters such as dielectric permittivity, AC conductivity, electrical modulus, and complex impedance were studied, incorporating Jonscher’s equation, and the Havriliak–Negami model. The interplay between interfacial charge and cellulose crystallinity emerged as a crucial factor in the observed dielectric behavior. Overall, this research provides insights into the thermal and dielectric properties of cellulose/CNF composites, offering potential applications in diverse fields.