In this paper, we combine the use of Drop-on-Demand (DOD) ink-jet printing with completely water-based inks as a novel approach to the CSD process for coated conductors. This method holds the promise of improved scalability due to lower ink losses, continuous processing and a drastically increased precursor lifetime due to the prevention of solvent evaporation and dust incorporation. Moreover, ink-jet printing has the potential to switch quite easily from continuous coatings to a multi-filamentary pattern, which is particularly important for alternating current (AC) or field applications of coated conductors. The fluid properties, often expressed with dimensionless constants, like the Reynolds and Weber numbers, for printable liquids were determined. For proof-of-concept, single crystals of SrTiO 3 with a low mismatch towards YBCO, were used as substrates.