Cartilage injury is a common disease in daily life. Especially in aging populations, the incidence of osteoarthritis is increasing. However, due to the poor regeneration ability of cartilage, most cartilage injuries cannot be effectively repaired. Even cartilage tissue engineering still faces many problems such as complex composition and poor integration of scaffolds and host tissues. In this study, chondroitin sulfate, one of the main components of extracellular matrix (ECM), is chosen as the main natural component of the material, which can protect cartilage in a variety of ways. Moreover, the results show that the addition of chondroitin sulfate improves the mechanical properties of gelatin methacrylate (GelMA) hydrogel, making it able to effectively bear mechanical loads in vivo. Further, chondroitin sulfate is modified to obtain the oxidized chondroitin sulfate (OCS) containing aldehyde groups via sodium periodate. This special group improves the interface integration and adhesion ability of the hydrogel to host cartilage tissue through schiff base reactions. In summary, GelMA/OCS hydrogel is a promising candidate for cartilage regeneration with good biocompatibility, mechanical properties, tissue integration ability, and excellent cartilage repair ability.