The development of low-cost, efficient, and environmentally friendly adsorbents is the key to highly toxic hexavalent chromium [Cr(VI)] removal by adsorption. In this paper, aminofunctionalized lotus stem hydrochar (ALSHC) was prepared from an agricultural waste lotus stem (LS) for the adsorption removal of Cr(VI) from water. The effects of the initial Cr(VI) concentration, contact time, temperature, coexisting anions, and reusability of ALSHC on Cr(VI) removal were examined in detail. The adsorption mechanism was further discussed by investigating the impact of the solution's initial pH, the relation between the pH change in solution and Cr(VI) removal during the process, the changes of chromium (Cr) species in solution and on ALSHC during adsorption, and the XPS characterization. The results demonstrated that ALSHC effectively removed Cr(VI) from water with rapid adsorption (the removal rate reached 80.90% in only 10 min) and in situ detoxification. Most importantly, ALSHC still had better adsorption performance (adsorption capacity of 30.95 mg g −1 ) than commercially activated carbon, even at pH = 9.00. The adsorption of Cr(VI) by ALSHC accorded with the pseudo-second-order kinetic model and Langmuir isotherm model, indicating a monolayer chemisorption process. The adsorption process was shown to be spontaneous and endothermic based on the thermodynamic characteristics (ΔG 0 < 0, ΔH 0 > 0, and ΔS 0 > 0). The mechanism of Cr(VI) removal was mainly composed of three parts in sequence: Firstly, Cr(VI) in solution was quickly adsorbed onto ALSHC with protonated −NH 2 through electrostatic attraction; subsequently, the adsorbed Cr(VI) on ALSHC was mostly detoxicated by in situ reduction; and finally, the reduced Cr(III) and the remaining Cr(VI) were fixed on the ALSHC surface by complexation. The prepared ALSHC displayed a certain superiority in Cr(VI) adsorption and had the prospect of further development.