2007
DOI: 10.1021/jp0688862
|View full text |Cite
|
Sign up to set email alerts
|

Fabrication of Organic Thin-Film Transistors Using Layer-by-Layer Assembly

Abstract: Layer-by-layer assembly is presented as a deposition technique for the incorporation of ultrathin gate dielectric layers into thin-film transistors utilizing a highly doped organic active layer. This deposition technique enables the fabrication of device structures with a controllable gate dielectric thickness. In particular, devices with a dielectric layer comprised of poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) bilayer films were fabricated to examine the properties of poly(3,4-ethylenedioxyt… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
18
0
2

Year Published

2008
2008
2021
2021

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 21 publications
(21 citation statements)
references
References 43 publications
1
18
0
2
Order By: Relevance
“…Recently, research of this method has become application-oriented as can be seen in several reports including surface modification for superhydrophobicity [868,869], sensor preparation [870][871][872][873][874], electrochromic devices [875], photochromic devices [876], thin film transistors [877], fuel cells [878], solid-state photovoltaic devices [879], rectifying junctions [880], and chiral switching [881].…”
Section: Layer-by-layer Assemblymentioning
confidence: 99%
“…Recently, research of this method has become application-oriented as can be seen in several reports including surface modification for superhydrophobicity [868,869], sensor preparation [870][871][872][873][874], electrochromic devices [875], photochromic devices [876], thin film transistors [877], fuel cells [878], solid-state photovoltaic devices [879], rectifying junctions [880], and chiral switching [881].…”
Section: Layer-by-layer Assemblymentioning
confidence: 99%
“…LbL assembly is an easy, flexible, and versatile process which can be performed on virtually any kind of substrate of any nature, size, shape, and chemical composition (e.g. planar, porous, colloidal particles, cylindrical structures) using a wide variety of building blocks, such as polymers, metal oxides, carbon nanotubes, graphene nanosheets, dyes, clays, particles, dendrimers, as well as proteins, enzymes, nucleic acids, peptides, or viruses . Therefore, there is absolutely no doubt that the number and variety of materials that can be assembled via LbL technique are only limited by our imagination.…”
Section: Background On the Lbl Assembly Techniquementioning
confidence: 99%
“…Таким образом, технология полиионной сборки позволяет создать композитные покрытия и наноматериалы с заданными свойствами, которые могут найти применение в органических устройствах и их составляющих: светоизлучающие и выпрямляющие диоды [53], транзисторы [52], фото-и электрохромные дисплейные устройства, стабилитроны [51] и резисторы [54], всевозможные датчики [44][45][46][47][48][49], устройства флеш-памяти [3], аккумуляторы [55], конденсаторы [66], пленки для высокочувствительной иммунодиагностики [58], супергидрофильные биосовместимые покрытия [61], супергидрофобные и супергидрофильные просветляющие покрытия [62,63], фотоэлектрические преобразователи [16-22, 30, 31], проводящая бумага [56,57].…”
Section: работа выполнена при финансовой поддержке рффи (проект № 11-unclassified