Bacterial infections on material surfaces are a serious public health concern worldwide. Although poly(vinyl alcohol) (PVA)-based materials have great potential as medical devices, they lack antibacterial properties on their surfaces and pose bacterial infection risks during implantation surgery.Copolymers containing antibacterial [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) units were used to modify the surfaces of chemically cross-linked water-insoluble PVA-based microfibers. The copolymers also had carboxy units that were used to react with the hydroxy group of the PVA-based microfibers via a simple thermal treatment at 135 °C. PVA-based materials containing METAC units exhibit significant swelling due to electrostatic repulsions. Because the copolymers were modified on the extreme surface of the microfibers, no difference in the diameters between unmodified microfibers (PM-fiber) and copolymers with METAC unit-modified microfibers (PM-METAC-fiber), in both the dry and swollen states, was observed. The viable bacterial cell numbers, which were evaluated by colony counting, decreased by exposure to the poly(METAC-co-methacrylic acid (MAAc)) aqueous solution or PM-METAC-fibers. The value of CFU/mL decreased to 0.1% (against B. subtilis) and 3.9% (against E. coli) after contact with the PM-METAC-fibers compared to the PM-fibers. The percentage of hemolysis against rabbit red blood cells was equivalent to that of the negative control, suggesting that PM-METAC-fibers can selectively exhibit antibacterial properties. This modification method can be applied to various PVA-based materials if hydroxy groups are present on their surface. This study provides a facile, cost-effective, and promising strategy to impart antibacterial properties to the surface of PVA-based materials without significantly affecting their physicochemical properties.