This study reports on the combination of the electrospinning technique and an adapted vapor-phase polymerization procedure to fabricate PEDOT nanofibers. The fibers have average diameters around 350 nm and are soldered at every intersection of the mat, ensuring a superior dimensional stability. The nanofibers are highly ordered at the molecular level, giving the nonwoven mats a very high conductivity (∼60 S/cm), the highest value reported so far for polymer nanofibers. The mats also demonstrate interesting electrochemical properties due to their porous and nanostructured nature. These conductive nanofibers are expected to be of interest for a number of electronic devices requiring flexibility and/or significant surface area, such as sensors or energy storage systems.