In this paper, we design and theoretically simulate a highly sensitive photonic crystal fiber sensor based on lossy mode resonance. An ITO/HfO 2 bilayer was coated onto the exposed area of the fiber core as the sensing material. This asymmetrical structure can lead both TM-and TE-polarization to improve the detection performance. In addition, we further investigated the influence of the ratio of ITO/HfO 2 bilayer film thickness on the maximum sensitivity of the proposed sensor and finally reached a maximum sensitivity at 1.92nm/1% for glycerol solutions detection, which plays a significant role in the optical fiber sensor in the field of glycerol detection.