It is common in the field of printed electronics that polydimethylsiloxane (PDMS) be used as a dielectric layer for capacitive sensors because of its high elasticity and restoration force. However, capacitive sensors with the PDMS dielectric layer have a lower sensitivity than those with an air-gap structure that has been fabricated by the conventional micro-electromechanical system (MEMS) process. This paper presents a productive method for fabricating air-gap structures for touch sensors by roll-to-roll slot-die coating. The air-gap is formed by coating and removing a sacrificial layer. Cantilever-structured capacitive touch sensors with an air-gap are fabricated as follows: First, the bottom electrode, the dielectric layer, and the poly(vinyl alcohol) (PVA) sacrificial layer are roll-to-roll slot-die-coated on a flexible substrate. In addition, the spacer layer is spin-coated. On the sacrificial and spacer layers, the top electrode and structural layer are formed by spin-coating. Then, the air-gap and cantilever structure are made by removing the sacrificial layer in water. The cantilever-structured sensor samples are examined in terms of sensitivity, hysteresis, and repeatability. In particular, the electrical performance of the samples is compared to those with the PDMS dielectric layer. Experimental results show that the cantilever-structured sensor samples have significantly higher sensitivity compared to those with the PDMS dielectric layer.