368and strength of the chemical bonds of wide-band gap semiconductors, photodetectors engineered based on most of metal-oxides can withstand highly elevated T and hostile environments. Despite the fact that carrier mobilities are much smaller in cases of metal oxides compared with those of many conventional semiconductors, owing to the drastically increased dielectric strength of metal oxides, much larger carrier velocities can be readily achieved by applying much higher electric fields/device biases. The property remains critical for reducing the photogenerated carrier transit time and thus improving gain characteristics of the photodetectors. Advances in nanofabrication methodologies now allow growing many metal-oxide nanowires, including in ZnO as dislocation-free, highly faceted single crystals, which according to the above-made discussion show significant promise for diverse nanophotodetector device as well as light-emission applications. At the same time, compared to cSi, ZnO nanowires typically exhibit a very limited intrinsic sensitivity to visible and infrared radiation, whereas the sensitivity to short-wavelength photons also tends to be reduced as a result of their small diameter and relative increase in the number of the surface defect states. In this chapter, we provide a brief review on the progress in engineering highresponsitivity ZnO nanowire photodetectors operating in an extended, i.e., ultravioletvisible spectral range. Particular attention is paid to the use and role of transition metal dopants to enhance the light sensitivity of ZnO nanowires/nanorods grown by seeded vapor-transport methods. Detailed consideration is given to several key aspects pertaining to the transport, photoconduction, and time-response characteristics of two-terminal metalsemiconductor-metal nano-photodetectors operating at both pre-avalanche and avalanche regimes. This review might be important to scientists working in with high-sensitivity and multispectral oxide-based nano-photodetectors, optical switches, and sensors.