2014 Information and Communication Technologies Innovation and Application (ICTIA) 2014
DOI: 10.1109/ictia.2014.7883765
|View full text |Cite
|
Sign up to set email alerts
|

Fabrics defects detecting using image processing and neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(6 citation statements)
references
References 8 publications
0
4
0
2
Order By: Relevance
“…It is seen that the artificial neural network (ANN) is used in many studies. Kuo and Lee, 4 Huang and Chen, 5 Kumar, 6 Behera and Mani, 7 Bu¨yu¨kkabasakal, 8 C¸elik et al, 9 Jmali et al, 10 and Rebhi et al 11 propose ANN-based studies. Kuo and Lee 4 employ a feedback neural network with three defect characteristics retrieved (maximum length, maximum breadth, and defect gray level).…”
Section: Related Workmentioning
confidence: 99%
“…It is seen that the artificial neural network (ANN) is used in many studies. Kuo and Lee, 4 Huang and Chen, 5 Kumar, 6 Behera and Mani, 7 Bu¨yu¨kkabasakal, 8 C¸elik et al, 9 Jmali et al, 10 and Rebhi et al 11 propose ANN-based studies. Kuo and Lee 4 employ a feedback neural network with three defect characteristics retrieved (maximum length, maximum breadth, and defect gray level).…”
Section: Related Workmentioning
confidence: 99%
“…In paper [4], it was proposed to provide a diagnostic procedure for detecting and classifying defects in warp and weft using a computer program developed by MATLAB that analyzed images of fabric samples obtained using a flat scanner. Three were determined to detect defects.…”
Section: Literature Surveymentioning
confidence: 99%
“…For the current implementation of this paper, the camera and system with the following specification are used to capture and test the textile material. Table [4] specifies system specification.…”
Section: System Specificationmentioning
confidence: 99%
“…Öğrenme tabanlı çalışmalarda denetimli (supervised) makine öğrenmesi tekniklerinden yapay sinir ağları [24][25][26] ve destek vektör makineleri [27] en çok karşılaşılan metotlardandır. Denetimli makine öğrenmesi tekniklerinde eldeki veri eğitim ve test için olmak üzere ikiye ayrılır.…”
Section: Introductionunclassified
“…Jmali ve ark. [24] kumaş örneklerindeki hataları bulup sınıflandırmak için tek katmanlı sinir ağı kullanırken Kumar [25] ile Kuo ve Lee [26] geri beslemeli sinir ağı kullanırlar. Destek vektör makinelerinin kullanıldığı çalışmalarda sınıfları en iyi ayıran hiperdüzlemi bulmak için genellikle melez sistemlerin geliştirildiği saptanmıştır.…”
Section: Introductionunclassified