“…To get a clearer picture in Table 13 we present the achieved accuracies of all 150 analyzed papers. (Schroff et al, 2015) LFW 99.63% (Schroff et al, 2015) YTF 95.12% (Taigman et al, 2015) LFW 95.17% (Syafeeza et al, 2015) ORL 100.00% (Jalali et al, 2015) FERET 88.80%-92.00% (Huang and Yuan, 2015) FERET 97.40% (Sun et al, 2015a) LFW 99.47% (Sun et al, 2015a) YTF 93.20% (Yadhul et al, 2014) YTCD 97.09% (Zhang et al, 2016) ORL 93.33% (Simón et al, 2016) RGB-D-T face / (Sun et al, 2013) LFW 93.83% (Peng et al, 2016) CASIA NIR 96.02%-100.00% (Herrmann et al, 2016) YTF 80.30% (Li and Zhu, 2016) YTF 94.56%-98.43% (Vizilter et al, 2016) LFW 96.30%-98.59% (Zheng et al, 2016) CASIA-WebFace 96.40%-97.90% (Guo et al, 2016a) ORL 97.50% (Singh and Om, 2017) IIT(BHU) 86.22%-91.03% (Guo et al, 2017) SunWin Face 80.34%-99.26% (Guo et al, 2017) LFW 98.95% (Guo et al, 2017) HIT LAB2 89.80%-98.74% (Guo et al, 2017) YTF 97.30% (Hu et al, 2017) AT&T 91.25%-95.00% (Hu et al, 2017) FRGCv2.0 85.15% (Fu et al, 2017) LFW 84.10%-97.10% (Bukovčiková et al, 2017) CelebA 85.74% (Liu et al, 2017 (Zeng et al, 2017) AR face Set 1 88.30%-100.00% (Zeng et al, 2017) AR face Set 2 76.30%-99.80% (Gruber et al, 2017) Casia-WebFace 90.70%-91.50% (Yeung et al, 2017) LFW 83.40% (Kim et al, 2017) custom dataset 96.70% (Reale et al, 2017) CASIA HFB 99.52% (Reale et al, 2017) CASIA NIR-VIS 2.0.…”