As a biosafety precaution, the World Health Organization (WHO) introduced the wearing of face masks after the COVID-19 epidemic. This posed challenges to existing facial recognition systems, so this study was born. In this publication, we describe how to create a system that allows you to identify people from images, even when they wear a mask. The face detector in OpenCV is used in conjunction with Based on the Mobile NetV2 architecture, a classification model in this way, it is possible to determine whether the face is wearing a mask and where it is situated. To conduct face recognition, A Face Net model is used as a feature extractor and a multilayer feedforward perceptron is used for training facial recognition models using a collection of about 4000+ photographs. Of the images, 52.9 percent came with a face mask and 47.1 percent were without mask. The outcomes of the tests demonstration that determining whether or not someone is wearing a mask is 99.65% accurate. Face recognition accuracy for ten people wearing masks is 99.52 percent, whereas face recognition accuracy without masks is 99.96 percent.