2012
DOI: 10.5121/ijcseit.2012.2107
|View full text |Cite
|
Sign up to set email alerts
|

Face Recognition Using Different Local Features with Different Distance Techniques

Abstract: A face recognition system using different local features with different distance measures is proposed in this paper. Proposed method is fast and gives accurate detection. Feature vector is based on Eigen values, Eigen vectors, and diagonal vectors of sub images. Images are partitioned into sub images to detect local features. Sub partitions are rearranged into vertically and horizontally matrices. Eigen values, Eigenvector and diagonal vectors are computed for these matrices. Global feature vector is generated… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2012
2012
2018
2018

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 7 publications
0
0
0
1
Order By: Relevance
“…Lamda ( ) merupakan parameter penentu dan bernilai bilangan positif dari 1 sampai dengan tak terhingga (∞), jika nilai λ = 1 maka ruang jarak minkowsky sama dengan manhattan [2], dan jika λ = 2 ruang jaraknya sama dengan euclidean [14], dan jika λ= ∞ sama dengan ruang jarak chebyshev [25].…”
Section: G Model Jarakunclassified
“…Lamda ( ) merupakan parameter penentu dan bernilai bilangan positif dari 1 sampai dengan tak terhingga (∞), jika nilai λ = 1 maka ruang jarak minkowsky sama dengan manhattan [2], dan jika λ = 2 ruang jaraknya sama dengan euclidean [14], dan jika λ= ∞ sama dengan ruang jarak chebyshev [25].…”
Section: G Model Jarakunclassified