2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) 2022
DOI: 10.1109/icacite53722.2022.9823434
|View full text |Cite
|
Sign up to set email alerts
|

Face Recognition Using Principal Component Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(3 citation statements)
references
References 4 publications
0
2
0
1
Order By: Relevance
“…Beberapa algoritma, teknik maupun metode telah banyak digunakan dalam eksperimen pengenalan wajah seperti algoritma PCA [7], [8], viola jones [9], wavelet [2], CNN [10], [11] , haar cascade [11], [12]. Beberapa contoh tersebut memiliki hasil pengenalan wajah yang sesuai, tingkat akurasi tinggi dan mampu mendeteksi wajah sesuai dengan citra data latih.…”
Section: Iunclassified
“…Beberapa algoritma, teknik maupun metode telah banyak digunakan dalam eksperimen pengenalan wajah seperti algoritma PCA [7], [8], viola jones [9], wavelet [2], CNN [10], [11] , haar cascade [11], [12]. Beberapa contoh tersebut memiliki hasil pengenalan wajah yang sesuai, tingkat akurasi tinggi dan mampu mendeteksi wajah sesuai dengan citra data latih.…”
Section: Iunclassified
“…PCA is a widely used method for feature extraction over a several disciplines, including but not limited to pattern recognition, computer vision, and image processing. The original data are transformed using a linear method into a reduced-dimensional subspace, in which the directions with the highest variance in the data are retained, and the others are discarded (Rani et al, 2022).…”
Section: Feature Extraction and Recognitionmentioning
confidence: 99%
“…In this approach, three different hand-crafted methods have been used in order to do the face recognition task, namely Principal Component Analysis (PCA) (Rani et al, 2022), Local Binary Patterns (LBP) (Kulkarni et al, 2017) and Histogram of Oriented Gradients (HOG) (Ahamed et al, 2018). All the experimental works are conducted on stateof-the-art datasets, namely Cross-Age Labeled Faces in the Wild (CALFW) (Zheng et al, 2017) and Masked Labeled Faces in the Wild (MLFW) (Wang et al, 2022).…”
Section: Introductionmentioning
confidence: 99%