“…It is important to notice that the second most largest category goes to private datasets with 34 papers (Zhou et al, 2018;Ara et al, 2017;Phankokkruad, 2018;Gilani and Mian, 2018;Khan et al, 2019b;Qin et al, 2019;Liu et al, 2019;Peng et al, 2019;Mangal et al, 2020;Lv et al, 2020;Perti et al, 2020;Kim et al, 2017;Irjanto and Surantha, 2020;Arafah et al, 2020;Prasetyo et al, 2021;Moon et al, 2017;Chandran et al, 2018;Yang et al, 2018;Son et al, 2020;Alhanaee et al, 2021;Khan et al, 2020;Nakajima et al, 2021;Talahua et al, 2021;He and Ding, 2023;Karlupia et al, 2023;Bussey et al, 2017;Li et al, 2022;Filippidou and Papakostas, 2020;Bussey et al, 2017;Singh et al, 2022;Setio Aji et al, 2022;Wang et al, 2022;Lestari et al, 2021) creating their own datasets for testing. There are advantages and disadvantages to developing and utilizing private face image datasets for CNN-based face recognition.…”