2022
DOI: 10.1007/978-3-031-15919-0_13
|View full text |Cite
|
Sign up to set email alerts
|

Face Super-Resolution with Spatial Attention Guided by Multiscale Receptive-Field Features

Abstract: Face super-resolution (FSR) is dedicated to the restoration of high-resolution (HR) face images from their low-resolution (LR) counterparts. Many deep FSR methods exploit facial prior knowledge (e.g., facial landmark and parsing map) related to facial structure information to generate HR face images. However, directly training a facial prior estimation network with deep FSR model requires manually labeled data, and is often computationally expensive. In addition, inaccurate facial priors may degrade super-reso… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 30 publications
0
0
0
Order By: Relevance