Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Malignant tumors, also known as cancers, are a global public health problem. Nanogels are promising carriers for the delivery of anticancer medicines. Therefore, based on the unique microenvironment of tumor cells and the advantages of nanogels, a simple and economical one-pot synthesis method was designed to construct natural polysaccharide-based redox-responsive nanogels (LDD NGs). The enhanced permeability and retention (EPR) effect enriched LDD NGs in tumor cells, which then rapidly collapsed and released the natural antitumor drug diosgenin (DG) and the natural polysaccharide lentinan (LNT) via the depletion of a high level of reduced glutathione (GSH) in tumor cells, resulting in a synergistic therapeutic effect of chemotherapy and immunotherapy. In vivo antitumor experiments showed that LDD NGs could inhibit the proliferation and metastasis of the A549 lung cancer cells. Further studies indicated that LDD NGs could increase the production of ROS and induce apoptosis of A549 cells. In addition, LNT released from LDD NGs could promote the proliferation of dendritic cells, increase the production of NO, and upregulate the expressions of the costimulatory molecules CD40, CD80, CD86, and MHC-II. The construction of LDD NGs was a novel drug synthesis approach that could provide fresh ideas for the development of polysaccharide-based redox-responsive drug delivery systems.
Malignant tumors, also known as cancers, are a global public health problem. Nanogels are promising carriers for the delivery of anticancer medicines. Therefore, based on the unique microenvironment of tumor cells and the advantages of nanogels, a simple and economical one-pot synthesis method was designed to construct natural polysaccharide-based redox-responsive nanogels (LDD NGs). The enhanced permeability and retention (EPR) effect enriched LDD NGs in tumor cells, which then rapidly collapsed and released the natural antitumor drug diosgenin (DG) and the natural polysaccharide lentinan (LNT) via the depletion of a high level of reduced glutathione (GSH) in tumor cells, resulting in a synergistic therapeutic effect of chemotherapy and immunotherapy. In vivo antitumor experiments showed that LDD NGs could inhibit the proliferation and metastasis of the A549 lung cancer cells. Further studies indicated that LDD NGs could increase the production of ROS and induce apoptosis of A549 cells. In addition, LNT released from LDD NGs could promote the proliferation of dendritic cells, increase the production of NO, and upregulate the expressions of the costimulatory molecules CD40, CD80, CD86, and MHC-II. The construction of LDD NGs was a novel drug synthesis approach that could provide fresh ideas for the development of polysaccharide-based redox-responsive drug delivery systems.
Introduction Programmed death 1 (PD-1)/programmed death 1 ligand 1 (PD-L1)-directed immunotherapy has revolutionized the treatments for advanced non-small cell lung cancer (NSCLC), whereas the optimal therapeutic combinations remain uncertain. Methods Our study encompassed phase Ⅱ/III randomized controlled trials (RCTs) that involved anti-PD-(L)1-based therapies for stage-IV NSCLC. The primary outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and incidences of adverse events (AEs). Subgroup analyses were conducted by treatment lines, PD-L1 expression levels, histological types, and metastatic sites. Results Our analysis incorporated 38 publications, covering 14 therapeutic combinations and involving 18,048 participants. PD-(L)1+chemotherapy (CT), PD-(L)1+ cytotoxic T lymphocyte-associated antigen-4 (CTLA4) +CT, and PD-(L)1+ T-cell immunoglobulin and ITIM domain (TIGIT) were notably effective in prolonging OS. Overall, PD-(L)1+CT and PD-(L)1+CT+ vascular endothelial growth factor (VEGF) were significantly beneficial for PFS and ORR. As for the subsequent-line treatments, incorporating radiotherapy can enhance PFS and ORR (ranked fourth among enrolled treatments). For patients with PD-L1 < 1%, PD-(L)1+CT+VEGF and PD-(L)1+CTLA4+CT were favorable approaches. Conversely, in patients with PD-L1 ≥ 50%, PD-(L)1+CT represented an effective treatment. Patients with non-squamous cell carcinoma or liver metastases might benefit from the addition of VEGF. In cases of squamous cell carcinoma or brain metastases, the combination of PD-(L)1+CTLA4+CT yielded superior benefits. Conclusions This study underscores the enhanced efficacy of combination immunotherapies over monotherapy. It highlights the necessity for personalized treatment, considering individual factors. These insights are vital for clinical decision-making in the management of advanced NSCLC.
Background In non-small cell lung cancer (NSCLC) the efficacy of chemo-immunotherapy is affected by the high expression of drug efflux transporters as ABCC1 and by the low expression of ABCA1, mediating the isopentenyl pyrophosphate (IPP)-dependent anti-tumor activation of Vγ9Vδ2 T-lymphocytes. In endothelial cells ABCA1 is a predicted target of the transcription factor EB (TFEB), but no data exists on the correlation between TFEB and ABC transporters involved in the chemo-immuno-resistance in NSCLC. Methods The impact of TFEB/ABCC1/ABCA1 expression on NSCLC patients’ survival was analyzed in the TCGA-LUAD cohort and in a retrospective cohort of our institution. Human NSCLC cells silenced for TFEB (shTFEB) were analyzed for ABC transporter expression, chemosensitivity and immuno-killing. The chemo-immuno-sensitizing effects of nanoparticles encapsulating zoledronic acid (NZ) on shTFEB tumors and on tumor immune-microenvironment were evaluated in Hu-CD34+ mice by single-cell RNA-sequencing. Results TFEBlowABCA1lowABCC1high and TFEBhighABCA1highABCC1low NSCLC patients had the worst and the best prognosis, respectively, in the TCGA-LUAD cohort and in a retrospective cohort of patients receiving platinum-based chemotherapy or immunotherapy as first-line treatment. By silencing shTFEB in NSCLC cells, we demonstrated that TFEB was a transcriptional inducer of ABCA1 and a repressor of ABCC1. shTFEB cells had also a decreased activity of ERK1/2/SREBP2 axis, implying reduced synthesis and efflux via ABCA1 of cholesterol and its intermediate IPP. Moreover, TFEB silencing reduced cholesterol incorporation in mitochondria: this event increased the efficiency of OXPHOS and the fueling of ABCC1 by mitochondrial ATP. Accordingly, shTFEB cells were less immuno-killed by the Vγ9Vδ2 T-lymphocytes activated by IPP and more resistant to cisplatin. NZ, which increased IPP efflux but not OXPHOS and ATP production, sensitized shTFEB immuno-xenografts, by reducing intratumor proliferation and increasing apoptosis in response to cisplatin, and by increasing the variety of anti-tumor infiltrating cells (Vγ9Vδ2 T-lymphocytes, CD8+T-lymphocytes, NK cells). Conclusions This work suggests that TFEB is a gatekeeper of the sensitivity to chemotherapy and immuno-killing in NSCLC, and that the TFEBlowABCA1lowABCC1high phenotype can be predictive of poor response to chemotherapy and immunotherapy. By reshaping both cancer metabolism and tumor immune-microenvironment, zoledronic acid can re-sensitize TFEBlow NSCLCs, highly resistant to chemo- and immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.