Colloidal platelets are explored as elementary building blocks for the shape-controlled assembly of crystalline and quasicrystalline tilings. Using three-dimensional (3D) numerical modelling based on the minimization of Landau-de Gennes free energy for modelling of colloids combined with Finite Difference Time Domain calculations for optics, we demonstrate the self-assembly and optical (transmission) properties of triangular, square and pentagonal sub-micrometer sized platelets in a thin layer of nematic liquid crystal. Interactions between platelets are explored, providing an insight into the assembly process. Two-dimensional tilings of various-shaped colloidal platelets are demonstrated, and their use as diffraction layers is explored by using FDTD simulations. Designing symmetry-breaking surface anchoring profiles on pentagonal platelets opens also a possibility to achieve interactions that could lead to tilings with non-crystalline symmetry.