7th International Conference on Automatic Face and Gesture Recognition (FGR06)
DOI: 10.1109/fgr.2006.49
|View full text |Cite
|
Sign up to set email alerts
|

Facial Expression Classification using Gabor and Log-Gabor Filters

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
1

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(25 citation statements)
references
References 11 publications
0
20
0
1
Order By: Relevance
“…This is the case of Gabor filters, which are robust to illumination changes and detect face edges on multiple scales and with different orientations [69,36,21,4,5,51], the Local Binary Patterns (LBP) [56] and Volumetric Local Binary Patterns [70] and also of the eigenface approaches [61].…”
Section: Related Workmentioning
confidence: 99%
“…This is the case of Gabor filters, which are robust to illumination changes and detect face edges on multiple scales and with different orientations [69,36,21,4,5,51], the Local Binary Patterns (LBP) [56] and Volumetric Local Binary Patterns [70] and also of the eigenface approaches [61].…”
Section: Related Workmentioning
confidence: 99%
“…RBF neural network and fuzzy inference system is used for recognizing facial expressions. Zhengyou Zhang et al [23] presented a FER system where they have compared the use of two type of features extracted from face images for recognizing facial expression .Geometric positions of set of fiducial point and multiscale & multi orientation gobor wavelet coefficient extracted from the face image at the fiducial points are the two approaches used for feature extraction. These are given to neural network classifier separately or jointly and results were compared.…”
Section: Survey Of Existing Methodsmentioning
confidence: 99%
“…İlk aşamada yüz görüntülerindeki yüzün tamamından ya da belirli yüz bölgelerinden görünüm özellikleri çıkarılarak bir özellik vektörü oluşturulur [63]. Gabor filtresi [73][74][75][76] veya Yerel İkili Örüntü (LBP) operatörü [30,38,77,78] gibi teknikler yüz görünüm özelliklerini tespit ederek bir özellik vektörü oluşturmak için sıkça kullanılmaktadır. Daha sonra elde edilen özellik vektörü Destek Vektör Makinesi (SVM), Sinir Ağı (NN), Naive Bayesian (NB) gibi sınıflandırma yöntemlerine girdi olarak verilmektedir [79].…”
Section: Yüz İfadelerine Ait öZelliklerin çıKarılması (Extraction Of unclassified