Interest in facial recognition hypotheses and algorithms has grown steadily over the last few decades. Video monitoring, criminal identification, building access control, and unmanned and autonomous vehicles are only a few examples of concrete applications that are becoming increasingly attractive to industry. Various techniques are being developed, including local, holistic, and hybrid approaches, which use only a few face image characteristics or the entire facial features to provide a face image description. Many methods have good results, if there are sufficiently representative training samples per person, in the face recognition system. Facial part finding and extraction show the utmost vital role in face and age recognition. In this research work a new algorithm is proposed for Face and Age Recognition (FAR) by using Discrete Wavelet Transform (DWT), Radial Basis Function Support Vector Machine (RBF-SVM) classifier, and Rotational Local Binary Pattern (RLBP). RLBP is utilized for the selection and extraction of features from the face image. In this algorithm, extract the face component like Nose, Mouth, Left and Right eye. In the preprocessing stage median filter is used to remove noises from the face image. By using this, there is an improvement in the feature extraction procedure. In pattern recognition, a basic errand is finding a picture from the picture parts. For the implementation of results FG-NET ((Face and Gesture Recognition Network) and AT&T datasets are used. The detection rate of face recognition has reached up to 92–98% and the detection rate for age recognition is 87%. The proposed algorithm is compared with SVM shows better over previous algorithms and also estimate the value of accuracy.