2023
DOI: 10.1109/access.2023.3286547
|View full text |Cite
|
Sign up to set email alerts
|

Facial Expression Recognition in the Wild Using Face Graph and Attention

Abstract: Facial expression recognition (FER) in the wild from various viewpoints, lighting conditions, face poses, scales, and occlusions is an extremely challenging field of research. In this study, we construct a face graph by selecting action units that play an important role in changing facial expressions, and we propose an algorithm for recognizing facial expressions using a graph convolutional network (GCN). We first generated an attention map that can highlight action units to extract important facial expression… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
references
References 56 publications
0
0
0
Order By: Relevance