The artificial neural network (ANN) is a machine learning (ML) methodology that evolved and developed from the scheme of imitating the human brain. Artificial intelligence (AI) pyramid illustrates the evolution of ML approach to ANN and leading to deep learning (DL). Nowadays, researchers are very much attracted to DL processes due to its ability to overcome the selectivity-invariance problem. In this chapter, ANN has been explained by discussing the network topology and development parameters (number of nodes, number of hidden layers, learning rules and activated function). The basic concept of node and neutron has been explained, with the help of diagrams, leading to the ANN model and its operation. All the topics have been discussed in such a scheme to give the reader the basic concept and clarity in a sequential way from ANN perceptron model to deep learning models and underlying types.