The mineralization of nitrobenzene was executed using an innovative method, wherein Ag/Cu2O semiconductors stimulated by visible light irradiation were supported with persulfate anions. Batch-wise experiments were performed for the evaluation of effects of silver metal contents impregnated, persulfate concentrations and Ag/Cu2O dosages on the nitrobenzene removal efficiency. The physicochemical properties of fresh and reacted Ag/Cu2O were illustrated by X-ray diffraction analyses, FE-SEM images, EDS Mapping analyses, UV–Vis diffuse reflectance spectra, transient photocurrent analyses and X-ray photoelectron spectra, respectively. Because of intense scavenging effects caused by benzene, 1-propanol and methanol individually, the predominant oxidant was considered to be sulfate radicals, originated from persulfate anions via the photocatalysis of Ag/Cu2O. As regards oxidation pathways, nitrobenzene was initially transformed into hydroxycyclohexadienyl radicals, followed with the production of 2-nitrophenol, 3-nitrophenol or 4-nitrophenol. Afterwards, phenol compounds descended from denitration of nitrophenols were converted into hydroquinone and p-benzoquinone.