Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Methylene blue dye in water sources can pose health risks to humans, potentially causing methemoglobinemia, a condition that impairs the blood’s ability to carry oxygen. Hence, the current study investigates the synthesis of novel magnesium borate/magnesium oxide (Mg3B2O6/MgO) nanostructures and their efficiency in removing methylene blue dye from aqueous media. The nanostructures were synthesized using the Pechini sol–gel method, which involves a reaction between magnesium nitrate hexahydrate and boric acid, with citric acid acting as a chelating agent and ethylene glycol as a crosslinker. This method helps in achieving a homogeneous mixture, which, upon calcination at 600 and 800 °C, yields Mg3B2O6/MgO novel nanostructures referred to as MB600 and MB800, respectively. The characterization of these nanostructures involved techniques like X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, N2 gas analyzer, and field-emission scanning electron microscope (FE-SEM). These analyses confirmed the formation of orthorhombic Mg3B2O6 and cubic MgO phases with distinct features, influenced by the calcination temperature. The mean crystal size of the MB600 and MB800 samples was 64.57 and 79.20 nm, respectively. In addition, the BET surface area of the MB600 and MB800 samples was 74.63 and 64.82 m2/g, respectively. The results indicated that the MB600 sample, with its higher surface area, generally demonstrated better methylene blue dye removal performance (505.05 mg/g) than the MB800 sample (483.09 mg/g). The adsorption process followed the pseudo-second-order model, indicating dependency on available adsorption sites. Also, the adsorption process matched well with the Langmuir isotherm, confirming a homogeneous adsorbent surface. The thermodynamic parameters revealed that the adsorption process was physical, exothermic, and spontaneous. The MB600 and MB800 nanostructures could be effectively regenerated using 6 M HCl and reused across multiple cycles. These findings underscore the potential of these nanostructures as cost-effective and sustainable adsorbents for methylene blue dye removal.
Methylene blue dye in water sources can pose health risks to humans, potentially causing methemoglobinemia, a condition that impairs the blood’s ability to carry oxygen. Hence, the current study investigates the synthesis of novel magnesium borate/magnesium oxide (Mg3B2O6/MgO) nanostructures and their efficiency in removing methylene blue dye from aqueous media. The nanostructures were synthesized using the Pechini sol–gel method, which involves a reaction between magnesium nitrate hexahydrate and boric acid, with citric acid acting as a chelating agent and ethylene glycol as a crosslinker. This method helps in achieving a homogeneous mixture, which, upon calcination at 600 and 800 °C, yields Mg3B2O6/MgO novel nanostructures referred to as MB600 and MB800, respectively. The characterization of these nanostructures involved techniques like X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, N2 gas analyzer, and field-emission scanning electron microscope (FE-SEM). These analyses confirmed the formation of orthorhombic Mg3B2O6 and cubic MgO phases with distinct features, influenced by the calcination temperature. The mean crystal size of the MB600 and MB800 samples was 64.57 and 79.20 nm, respectively. In addition, the BET surface area of the MB600 and MB800 samples was 74.63 and 64.82 m2/g, respectively. The results indicated that the MB600 sample, with its higher surface area, generally demonstrated better methylene blue dye removal performance (505.05 mg/g) than the MB800 sample (483.09 mg/g). The adsorption process followed the pseudo-second-order model, indicating dependency on available adsorption sites. Also, the adsorption process matched well with the Langmuir isotherm, confirming a homogeneous adsorbent surface. The thermodynamic parameters revealed that the adsorption process was physical, exothermic, and spontaneous. The MB600 and MB800 nanostructures could be effectively regenerated using 6 M HCl and reused across multiple cycles. These findings underscore the potential of these nanostructures as cost-effective and sustainable adsorbents for methylene blue dye removal.
Platanus officinalis fibers (PFs) taking advantage of high-availability, eco-friendly and low-cost characteristics have attracted significant focus in the field of biomaterial application. Polyethyleneimine grafted with polydopamine on magnetic Platanus officinalis fibers (PEI-PDA@M-PFs) were prepared through a two-step process of mussel inspiration and the Michael addition reaction, which can work as an effective multifunctional biomass adsorbent for anionic dye with outstanding separation capacity and efficiency. The as-prepared PEI-PDA@M-PFs possess desirable hydrophilicity, magnetism and positive charge, along with abundant amino functional groups on the surface, facilitating efficient adsorption and the removal of Eriochrome Black T (EBT) dyes from water. In addition to the formation mechanism, the adsorption properties, including adsorption isotherms, kinetics, and the reusability of the absorbent, were studied intensively. The as-prepared PEI-PDA@M-PFs achieved a theoretical maximum adsorption capacity of 166.11 mg/g under optimal conditions (pH 7.0), with 10 mg of the adsorbent introduced into the EBT solution. The pseudo-second-order kinetic and Langmuir models were well matched with experimental data. Moreover, thermodynamic data ΔH > 0 revealed homogeneous chemical adsorption with a heat-absorption reaction. The adsorbent remained at high stability and recyclability even after five cycles of EBT adsorption processes. These above findings provide new insights into the adsorption processes and the development of biologic material for sustainable applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.