Water contamination is a pervasive global crisis, affecting over 2 billion people worldwide, with pharmaceutical contaminants emerging as a significant concern due to their persistence and mobility in aquatic ecosystems. This review explores the potential of activated hydrochars, sustainable materials produced through biomass pyrolysis, to revolutionize the removal of pharmaceutical contaminants from water sources. These materials possess high surface area, porous structure, and exceptional adsorption capabilities, making them a promising solution. The impact of pharmaceutical contaminants on aquatic ecosystems and human health is far-reaching, affecting biodiversity, water quality, and public health. To address this complex issue, a diverse range of techniques, including adsorption, biodegradation, and advanced oxidation processes, are employed in the pharmaceutical industry. Activated hydrochars offer substantial adsorption capacity, sustainable feedstock origins, and a minimal carbon footprint. This review highlights their potential in pharmaceutical contaminant removal and their broader applications in improving soil and air quality, resource recovery, and sustainable waste management. Interdisciplinary collaboration and the development of intelligent treatment systems are essential to fully unlock the potential of activated hydrochars. Regulatory support and policy frameworks will facilitate their responsible and widespread application, promising a cleaner and more sustainable future. This paper aims to inform scientists, environmental experts, policymakers, and industry stakeholders about the promising role of activated hydrochars in addressing pharmaceutical contaminant challenges.