Features such as color, brightness, fluorescence and stability are extremely important in applications of pigments. Anthocyanins, the natural pigment responsible for most of the purple, blue and red colors of flowers and fruits, have great potential for practical applications as dyes or antioxidants. However, these applications are limited by their chemical reactivity, which is affected by several factors, including pH, temperature, light, and oxygen, among others. Hybrid materials inspired by the ancient Maya Blue pigment are a promising alternative to improve the properties and applicability of natural and synthetic dyes. Flavylium cations serve as models for the chemical and photochemical reactivity of anthocyanins. Likewise, pyranoflavylium cations serve as models of the fundamental chromophoric moiety of pyranoanthocyanins, molecules that can form from reactions of the grape anthocyanins in red wines during their maturation. Fibrous clays, constituents responsible by the excellent stability of Maya blue pigment, have channels that can potentially allow partial or full insertion of these dyes molecules. Therefore, in the present thesis, hybrid pigments were prepared by the adsorption of a series of synthetic flavylium cations and synthetic pyranoflavylium cations on the fibrous clays palygorskite and sepiolite and their photophysical properties and stability were evaluated. The observation of biexponential fluorescence decays is consistent with emission from dye molecules adsorbed at two distinct sites on the fibrous clays. The fluorescence properties of dye molecules can be improved, depending on the amount of dyes adsorbed on the clay, by the formation of dye/clay hybrids. The color of the adsorbed dye molecules was somewhat more resistant to changes in external pH, photochemical stability was maintained and the thermal lability was markedly improved. Besides the development of novel hybrid flavylium cation/fibrous clay, we have achieved advances in the stabilization of these dye molecules, with regard mainly to the pH-dependent equilibrium and thermal treatment. In addition, the present work represents the first systematic study of hybrid materials prepared from pyranoflavylium cations. Therefore, the results obtained here definitively point to flavylium cations and pyranoflavylium cations as promising chromophores and fibrous clays as promising substrates for the development of novel, highly fluorescent hybrid pigments with attractive colors and marked chemical and thermal stability.