We report here the use of 4th and 5th generation dendrimers poly(propylene)imine (CU-D32 and CU-D64) as templating agents for the synthesis of mesoporous titanosilicate and vanadosilicate oxidation catalysts via sol-gel techniques. The physical properties of these mesoporous materials were characterized by TGA, BET, PXD and SEM/EDX analyses and these showed that the transition metals are evenly distributed throughout these silicates, which have interconnected spherical pores (approx. 12 Å in diameter) and high surface areas of about 650 m 2 g À1 . Kinetic studies showed that all transition metal-doped catalysts were highly selective at oxidizing cyclohexene to the corresponding epoxide. Additionally, CU-D64-templated catalysts were more catalytically active for cyclohexene epoxidation than CU-D32-templated catalysts as a result of differences in pore size. All CU-D64-templated catalysts exhibited epoxidation catalytic activity comparable to that of titanium doped MCM-41 materials.