Poly(3,4‐ethylene dioxythiophene) (PEDOT) is a conducting polymer that can be used in flexible bioelectronic devices. The electrode/electrolyte interface interaction is one of the most important factors in improving the electrochemical performance of energy storage materials, and these polymers are often combined with a negatively charged poly(styrene sulfonate) (PSS) chain to improve their interaction with alkali metal cations such as sodium and potassium. In this work, we performed a one‐step electrochemical synthesis of PEDOT on carbon fabric using the molecule 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) to create highly effective materials for supercapacitor electrodes. The electrode had a significant increase in capacitance value, measured 16.4 times higher than that of the PEDOT electrode. The 2‐electrode system exhibited a specific capacitance value of 495.2 F g−1 at a scan rate of 5 mV s−1. It exhibited a high operating voltage of 2.3 V in aqueous electrolyte system. It showed a significant energy density of 109.0 Wh kg−1 when operating at 6.1 kW kg−1 power density and 85.2 Wh kg−1 when operating at 30.6 kW kg−1 power density. Recent findings reveal that the capacitance retention performance value of the device increased significantly to 113.9% after 25,000 cycles in 3.0 M NaCl aqueous electrolyte, demonstrating its outstanding long‐term durability. Thus, the creation of the synthesized supercapacitor electrode is a significant advance in the study of conducting polymers, which often have a limited lifetime in real‐world electronic applications.